3.176 \(\int \frac{A+B x^3}{x^{3/2} (a+b x^3)^3} \, dx\)

Optimal. Leaf size=351 \[ -\frac{7 (13 A b-a B) \log \left (-\sqrt{3} \sqrt [6]{a} \sqrt [6]{b} \sqrt{x}+\sqrt [3]{a}+\sqrt [3]{b} x\right )}{144 \sqrt{3} a^{19/6} b^{5/6}}+\frac{7 (13 A b-a B) \log \left (\sqrt{3} \sqrt [6]{a} \sqrt [6]{b} \sqrt{x}+\sqrt [3]{a}+\sqrt [3]{b} x\right )}{144 \sqrt{3} a^{19/6} b^{5/6}}+\frac{7 (13 A b-a B) \tan ^{-1}\left (\sqrt{3}-\frac{2 \sqrt [6]{b} \sqrt{x}}{\sqrt [6]{a}}\right )}{216 a^{19/6} b^{5/6}}-\frac{7 (13 A b-a B) \tan ^{-1}\left (\frac{2 \sqrt [6]{b} \sqrt{x}}{\sqrt [6]{a}}+\sqrt{3}\right )}{216 a^{19/6} b^{5/6}}-\frac{7 (13 A b-a B) \tan ^{-1}\left (\frac{\sqrt [6]{b} \sqrt{x}}{\sqrt [6]{a}}\right )}{108 a^{19/6} b^{5/6}}+\frac{13 A b-a B}{36 a^2 b \sqrt{x} \left (a+b x^3\right )}-\frac{7 (13 A b-a B)}{36 a^3 b \sqrt{x}}+\frac{A b-a B}{6 a b \sqrt{x} \left (a+b x^3\right )^2} \]

[Out]

(-7*(13*A*b - a*B))/(36*a^3*b*Sqrt[x]) + (A*b - a*B)/(6*a*b*Sqrt[x]*(a + b*x^3)^2) + (13*A*b - a*B)/(36*a^2*b*
Sqrt[x]*(a + b*x^3)) + (7*(13*A*b - a*B)*ArcTan[Sqrt[3] - (2*b^(1/6)*Sqrt[x])/a^(1/6)])/(216*a^(19/6)*b^(5/6))
 - (7*(13*A*b - a*B)*ArcTan[Sqrt[3] + (2*b^(1/6)*Sqrt[x])/a^(1/6)])/(216*a^(19/6)*b^(5/6)) - (7*(13*A*b - a*B)
*ArcTan[(b^(1/6)*Sqrt[x])/a^(1/6)])/(108*a^(19/6)*b^(5/6)) - (7*(13*A*b - a*B)*Log[a^(1/3) - Sqrt[3]*a^(1/6)*b
^(1/6)*Sqrt[x] + b^(1/3)*x])/(144*Sqrt[3]*a^(19/6)*b^(5/6)) + (7*(13*A*b - a*B)*Log[a^(1/3) + Sqrt[3]*a^(1/6)*
b^(1/6)*Sqrt[x] + b^(1/3)*x])/(144*Sqrt[3]*a^(19/6)*b^(5/6))

________________________________________________________________________________________

Rubi [A]  time = 0.616117, antiderivative size = 351, normalized size of antiderivative = 1., number of steps used = 14, number of rules used = 10, integrand size = 22, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.454, Rules used = {457, 290, 325, 329, 295, 634, 618, 204, 628, 205} \[ -\frac{7 (13 A b-a B) \log \left (-\sqrt{3} \sqrt [6]{a} \sqrt [6]{b} \sqrt{x}+\sqrt [3]{a}+\sqrt [3]{b} x\right )}{144 \sqrt{3} a^{19/6} b^{5/6}}+\frac{7 (13 A b-a B) \log \left (\sqrt{3} \sqrt [6]{a} \sqrt [6]{b} \sqrt{x}+\sqrt [3]{a}+\sqrt [3]{b} x\right )}{144 \sqrt{3} a^{19/6} b^{5/6}}+\frac{7 (13 A b-a B) \tan ^{-1}\left (\sqrt{3}-\frac{2 \sqrt [6]{b} \sqrt{x}}{\sqrt [6]{a}}\right )}{216 a^{19/6} b^{5/6}}-\frac{7 (13 A b-a B) \tan ^{-1}\left (\frac{2 \sqrt [6]{b} \sqrt{x}}{\sqrt [6]{a}}+\sqrt{3}\right )}{216 a^{19/6} b^{5/6}}-\frac{7 (13 A b-a B) \tan ^{-1}\left (\frac{\sqrt [6]{b} \sqrt{x}}{\sqrt [6]{a}}\right )}{108 a^{19/6} b^{5/6}}+\frac{13 A b-a B}{36 a^2 b \sqrt{x} \left (a+b x^3\right )}-\frac{7 (13 A b-a B)}{36 a^3 b \sqrt{x}}+\frac{A b-a B}{6 a b \sqrt{x} \left (a+b x^3\right )^2} \]

Antiderivative was successfully verified.

[In]

Int[(A + B*x^3)/(x^(3/2)*(a + b*x^3)^3),x]

[Out]

(-7*(13*A*b - a*B))/(36*a^3*b*Sqrt[x]) + (A*b - a*B)/(6*a*b*Sqrt[x]*(a + b*x^3)^2) + (13*A*b - a*B)/(36*a^2*b*
Sqrt[x]*(a + b*x^3)) + (7*(13*A*b - a*B)*ArcTan[Sqrt[3] - (2*b^(1/6)*Sqrt[x])/a^(1/6)])/(216*a^(19/6)*b^(5/6))
 - (7*(13*A*b - a*B)*ArcTan[Sqrt[3] + (2*b^(1/6)*Sqrt[x])/a^(1/6)])/(216*a^(19/6)*b^(5/6)) - (7*(13*A*b - a*B)
*ArcTan[(b^(1/6)*Sqrt[x])/a^(1/6)])/(108*a^(19/6)*b^(5/6)) - (7*(13*A*b - a*B)*Log[a^(1/3) - Sqrt[3]*a^(1/6)*b
^(1/6)*Sqrt[x] + b^(1/3)*x])/(144*Sqrt[3]*a^(19/6)*b^(5/6)) + (7*(13*A*b - a*B)*Log[a^(1/3) + Sqrt[3]*a^(1/6)*
b^(1/6)*Sqrt[x] + b^(1/3)*x])/(144*Sqrt[3]*a^(19/6)*b^(5/6))

Rule 457

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> -Simp[((b*c - a*d
)*(e*x)^(m + 1)*(a + b*x^n)^(p + 1))/(a*b*e*n*(p + 1)), x] - Dist[(a*d*(m + 1) - b*c*(m + n*(p + 1) + 1))/(a*b
*n*(p + 1)), Int[(e*x)^m*(a + b*x^n)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, m, n}, x] && NeQ[b*c - a*d, 0] &
& LtQ[p, -1] && (( !IntegerQ[p + 1/2] && NeQ[p, -5/4]) ||  !RationalQ[m] || (IGtQ[n, 0] && ILtQ[p + 1/2, 0] &&
 LeQ[-1, m, -(n*(p + 1))]))

Rule 290

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> -Simp[((c*x)^(m + 1)*(a + b*x^n)^(p + 1))/(
a*c*n*(p + 1)), x] + Dist[(m + n*(p + 1) + 1)/(a*n*(p + 1)), Int[(c*x)^m*(a + b*x^n)^(p + 1), x], x] /; FreeQ[
{a, b, c, m}, x] && IGtQ[n, 0] && LtQ[p, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 325

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a + b*x^n)^(p + 1))/(a*
c*(m + 1)), x] - Dist[(b*(m + n*(p + 1) + 1))/(a*c^n*(m + 1)), Int[(c*x)^(m + n)*(a + b*x^n)^p, x], x] /; Free
Q[{a, b, c, p}, x] && IGtQ[n, 0] && LtQ[m, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 295

Int[(x_)^(m_.)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Module[{r = Numerator[Rt[a/b, n]], s = Denominator[Rt[a/
b, n]], k, u}, Simp[u = Int[(r*Cos[((2*k - 1)*m*Pi)/n] - s*Cos[((2*k - 1)*(m + 1)*Pi)/n]*x)/(r^2 - 2*r*s*Cos[(
(2*k - 1)*Pi)/n]*x + s^2*x^2), x] + Int[(r*Cos[((2*k - 1)*m*Pi)/n] + s*Cos[((2*k - 1)*(m + 1)*Pi)/n]*x)/(r^2 +
 2*r*s*Cos[((2*k - 1)*Pi)/n]*x + s^2*x^2), x]; (2*(-1)^(m/2)*r^(m + 2)*Int[1/(r^2 + s^2*x^2), x])/(a*n*s^m) +
Dist[(2*r^(m + 1))/(a*n*s^m), Sum[u, {k, 1, (n - 2)/4}], x], x]] /; FreeQ[{a, b}, x] && IGtQ[(n - 2)/4, 0] &&
IGtQ[m, 0] && LtQ[m, n - 1] && PosQ[a/b]

Rule 634

Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[(2*c*d - b*e)/(2*c), Int[1/(a +
 b*x + c*x^2), x], x] + Dist[e/(2*c), Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] &
& NeQ[2*c*d - b*e, 0] && NeQ[b^2 - 4*a*c, 0] &&  !NiceSqrtQ[b^2 - 4*a*c]

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{A+B x^3}{x^{3/2} \left (a+b x^3\right )^3} \, dx &=\frac{A b-a B}{6 a b \sqrt{x} \left (a+b x^3\right )^2}+\frac{\left (\frac{13 A b}{2}-\frac{a B}{2}\right ) \int \frac{1}{x^{3/2} \left (a+b x^3\right )^2} \, dx}{6 a b}\\ &=\frac{A b-a B}{6 a b \sqrt{x} \left (a+b x^3\right )^2}+\frac{13 A b-a B}{36 a^2 b \sqrt{x} \left (a+b x^3\right )}+\frac{(7 (13 A b-a B)) \int \frac{1}{x^{3/2} \left (a+b x^3\right )} \, dx}{72 a^2 b}\\ &=-\frac{7 (13 A b-a B)}{36 a^3 b \sqrt{x}}+\frac{A b-a B}{6 a b \sqrt{x} \left (a+b x^3\right )^2}+\frac{13 A b-a B}{36 a^2 b \sqrt{x} \left (a+b x^3\right )}-\frac{(7 (13 A b-a B)) \int \frac{x^{3/2}}{a+b x^3} \, dx}{72 a^3}\\ &=-\frac{7 (13 A b-a B)}{36 a^3 b \sqrt{x}}+\frac{A b-a B}{6 a b \sqrt{x} \left (a+b x^3\right )^2}+\frac{13 A b-a B}{36 a^2 b \sqrt{x} \left (a+b x^3\right )}-\frac{(7 (13 A b-a B)) \operatorname{Subst}\left (\int \frac{x^4}{a+b x^6} \, dx,x,\sqrt{x}\right )}{36 a^3}\\ &=-\frac{7 (13 A b-a B)}{36 a^3 b \sqrt{x}}+\frac{A b-a B}{6 a b \sqrt{x} \left (a+b x^3\right )^2}+\frac{13 A b-a B}{36 a^2 b \sqrt{x} \left (a+b x^3\right )}-\frac{(7 (13 A b-a B)) \operatorname{Subst}\left (\int \frac{-\frac{\sqrt [6]{a}}{2}+\frac{1}{2} \sqrt{3} \sqrt [6]{b} x}{\sqrt [3]{a}-\sqrt{3} \sqrt [6]{a} \sqrt [6]{b} x+\sqrt [3]{b} x^2} \, dx,x,\sqrt{x}\right )}{108 a^{19/6} b^{2/3}}-\frac{(7 (13 A b-a B)) \operatorname{Subst}\left (\int \frac{-\frac{\sqrt [6]{a}}{2}-\frac{1}{2} \sqrt{3} \sqrt [6]{b} x}{\sqrt [3]{a}+\sqrt{3} \sqrt [6]{a} \sqrt [6]{b} x+\sqrt [3]{b} x^2} \, dx,x,\sqrt{x}\right )}{108 a^{19/6} b^{2/3}}-\frac{(7 (13 A b-a B)) \operatorname{Subst}\left (\int \frac{1}{\sqrt [3]{a}+\sqrt [3]{b} x^2} \, dx,x,\sqrt{x}\right )}{108 a^3 b^{2/3}}\\ &=-\frac{7 (13 A b-a B)}{36 a^3 b \sqrt{x}}+\frac{A b-a B}{6 a b \sqrt{x} \left (a+b x^3\right )^2}+\frac{13 A b-a B}{36 a^2 b \sqrt{x} \left (a+b x^3\right )}-\frac{7 (13 A b-a B) \tan ^{-1}\left (\frac{\sqrt [6]{b} \sqrt{x}}{\sqrt [6]{a}}\right )}{108 a^{19/6} b^{5/6}}-\frac{(7 (13 A b-a B)) \operatorname{Subst}\left (\int \frac{-\sqrt{3} \sqrt [6]{a} \sqrt [6]{b}+2 \sqrt [3]{b} x}{\sqrt [3]{a}-\sqrt{3} \sqrt [6]{a} \sqrt [6]{b} x+\sqrt [3]{b} x^2} \, dx,x,\sqrt{x}\right )}{144 \sqrt{3} a^{19/6} b^{5/6}}+\frac{(7 (13 A b-a B)) \operatorname{Subst}\left (\int \frac{\sqrt{3} \sqrt [6]{a} \sqrt [6]{b}+2 \sqrt [3]{b} x}{\sqrt [3]{a}+\sqrt{3} \sqrt [6]{a} \sqrt [6]{b} x+\sqrt [3]{b} x^2} \, dx,x,\sqrt{x}\right )}{144 \sqrt{3} a^{19/6} b^{5/6}}-\frac{(7 (13 A b-a B)) \operatorname{Subst}\left (\int \frac{1}{\sqrt [3]{a}-\sqrt{3} \sqrt [6]{a} \sqrt [6]{b} x+\sqrt [3]{b} x^2} \, dx,x,\sqrt{x}\right )}{432 a^3 b^{2/3}}-\frac{(7 (13 A b-a B)) \operatorname{Subst}\left (\int \frac{1}{\sqrt [3]{a}+\sqrt{3} \sqrt [6]{a} \sqrt [6]{b} x+\sqrt [3]{b} x^2} \, dx,x,\sqrt{x}\right )}{432 a^3 b^{2/3}}\\ &=-\frac{7 (13 A b-a B)}{36 a^3 b \sqrt{x}}+\frac{A b-a B}{6 a b \sqrt{x} \left (a+b x^3\right )^2}+\frac{13 A b-a B}{36 a^2 b \sqrt{x} \left (a+b x^3\right )}-\frac{7 (13 A b-a B) \tan ^{-1}\left (\frac{\sqrt [6]{b} \sqrt{x}}{\sqrt [6]{a}}\right )}{108 a^{19/6} b^{5/6}}-\frac{7 (13 A b-a B) \log \left (\sqrt [3]{a}-\sqrt{3} \sqrt [6]{a} \sqrt [6]{b} \sqrt{x}+\sqrt [3]{b} x\right )}{144 \sqrt{3} a^{19/6} b^{5/6}}+\frac{7 (13 A b-a B) \log \left (\sqrt [3]{a}+\sqrt{3} \sqrt [6]{a} \sqrt [6]{b} \sqrt{x}+\sqrt [3]{b} x\right )}{144 \sqrt{3} a^{19/6} b^{5/6}}-\frac{(7 (13 A b-a B)) \operatorname{Subst}\left (\int \frac{1}{-\frac{1}{3}-x^2} \, dx,x,1-\frac{2 \sqrt [6]{b} \sqrt{x}}{\sqrt{3} \sqrt [6]{a}}\right )}{216 \sqrt{3} a^{19/6} b^{5/6}}+\frac{(7 (13 A b-a B)) \operatorname{Subst}\left (\int \frac{1}{-\frac{1}{3}-x^2} \, dx,x,1+\frac{2 \sqrt [6]{b} \sqrt{x}}{\sqrt{3} \sqrt [6]{a}}\right )}{216 \sqrt{3} a^{19/6} b^{5/6}}\\ &=-\frac{7 (13 A b-a B)}{36 a^3 b \sqrt{x}}+\frac{A b-a B}{6 a b \sqrt{x} \left (a+b x^3\right )^2}+\frac{13 A b-a B}{36 a^2 b \sqrt{x} \left (a+b x^3\right )}+\frac{7 (13 A b-a B) \tan ^{-1}\left (\sqrt{3}-\frac{2 \sqrt [6]{b} \sqrt{x}}{\sqrt [6]{a}}\right )}{216 a^{19/6} b^{5/6}}-\frac{7 (13 A b-a B) \tan ^{-1}\left (\sqrt{3}+\frac{2 \sqrt [6]{b} \sqrt{x}}{\sqrt [6]{a}}\right )}{216 a^{19/6} b^{5/6}}-\frac{7 (13 A b-a B) \tan ^{-1}\left (\frac{\sqrt [6]{b} \sqrt{x}}{\sqrt [6]{a}}\right )}{108 a^{19/6} b^{5/6}}-\frac{7 (13 A b-a B) \log \left (\sqrt [3]{a}-\sqrt{3} \sqrt [6]{a} \sqrt [6]{b} \sqrt{x}+\sqrt [3]{b} x\right )}{144 \sqrt{3} a^{19/6} b^{5/6}}+\frac{7 (13 A b-a B) \log \left (\sqrt [3]{a}+\sqrt{3} \sqrt [6]{a} \sqrt [6]{b} \sqrt{x}+\sqrt [3]{b} x\right )}{144 \sqrt{3} a^{19/6} b^{5/6}}\\ \end{align*}

Mathematica [C]  time = 0.0895798, size = 113, normalized size = 0.32 \[ 2 \left (-\frac{x^{5/2} (A b-a B) \, _2F_1\left (\frac{5}{6},3;\frac{11}{6};-\frac{b x^3}{a}\right )}{5 a^4}-\frac{A b x^{5/2} \, _2F_1\left (\frac{5}{6},1;\frac{11}{6};-\frac{b x^3}{a}\right )}{5 a^4}-\frac{A b x^{5/2} \, _2F_1\left (\frac{5}{6},2;\frac{11}{6};-\frac{b x^3}{a}\right )}{5 a^4}-\frac{A}{a^3 \sqrt{x}}\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[(A + B*x^3)/(x^(3/2)*(a + b*x^3)^3),x]

[Out]

2*(-(A/(a^3*Sqrt[x])) - (A*b*x^(5/2)*Hypergeometric2F1[5/6, 1, 11/6, -((b*x^3)/a)])/(5*a^4) - (A*b*x^(5/2)*Hyp
ergeometric2F1[5/6, 2, 11/6, -((b*x^3)/a)])/(5*a^4) - ((A*b - a*B)*x^(5/2)*Hypergeometric2F1[5/6, 3, 11/6, -((
b*x^3)/a)])/(5*a^4))

________________________________________________________________________________________

Maple [A]  time = 0.045, size = 435, normalized size = 1.2 \begin{align*} -{\frac{19\,A{b}^{2}}{36\,{a}^{3} \left ( b{x}^{3}+a \right ) ^{2}}{x}^{{\frac{11}{2}}}}+{\frac{7\,Bb}{36\,{a}^{2} \left ( b{x}^{3}+a \right ) ^{2}}{x}^{{\frac{11}{2}}}}-{\frac{25\,Ab}{36\,{a}^{2} \left ( b{x}^{3}+a \right ) ^{2}}{x}^{{\frac{5}{2}}}}+{\frac{13\,B}{36\,a \left ( b{x}^{3}+a \right ) ^{2}}{x}^{{\frac{5}{2}}}}-{\frac{91\,A}{108\,{a}^{3}}\arctan \left ({\sqrt{x}{\frac{1}{\sqrt [6]{{\frac{a}{b}}}}}} \right ){\frac{1}{\sqrt [6]{{\frac{a}{b}}}}}}-{\frac{91\,Ab\sqrt{3}}{432\,{a}^{4}} \left ({\frac{a}{b}} \right ) ^{{\frac{5}{6}}}\ln \left ( x-\sqrt{3}\sqrt [6]{{\frac{a}{b}}}\sqrt{x}+\sqrt [3]{{\frac{a}{b}}} \right ) }-{\frac{91\,A}{216\,{a}^{3}}\arctan \left ( 2\,{\sqrt{x}{\frac{1}{\sqrt [6]{{\frac{a}{b}}}}}}-\sqrt{3} \right ){\frac{1}{\sqrt [6]{{\frac{a}{b}}}}}}+{\frac{91\,Ab\sqrt{3}}{432\,{a}^{4}} \left ({\frac{a}{b}} \right ) ^{{\frac{5}{6}}}\ln \left ( x+\sqrt{3}\sqrt [6]{{\frac{a}{b}}}\sqrt{x}+\sqrt [3]{{\frac{a}{b}}} \right ) }-{\frac{91\,A}{216\,{a}^{3}}\arctan \left ( 2\,{\sqrt{x}{\frac{1}{\sqrt [6]{{\frac{a}{b}}}}}}+\sqrt{3} \right ){\frac{1}{\sqrt [6]{{\frac{a}{b}}}}}}+{\frac{7\,B}{108\,{a}^{2}b}\arctan \left ({\sqrt{x}{\frac{1}{\sqrt [6]{{\frac{a}{b}}}}}} \right ){\frac{1}{\sqrt [6]{{\frac{a}{b}}}}}}+{\frac{7\,B\sqrt{3}}{432\,{a}^{3}} \left ({\frac{a}{b}} \right ) ^{{\frac{5}{6}}}\ln \left ( x-\sqrt{3}\sqrt [6]{{\frac{a}{b}}}\sqrt{x}+\sqrt [3]{{\frac{a}{b}}} \right ) }+{\frac{7\,B}{216\,{a}^{2}b}\arctan \left ( 2\,{\sqrt{x}{\frac{1}{\sqrt [6]{{\frac{a}{b}}}}}}-\sqrt{3} \right ){\frac{1}{\sqrt [6]{{\frac{a}{b}}}}}}-{\frac{7\,B\sqrt{3}}{432\,{a}^{3}} \left ({\frac{a}{b}} \right ) ^{{\frac{5}{6}}}\ln \left ( x+\sqrt{3}\sqrt [6]{{\frac{a}{b}}}\sqrt{x}+\sqrt [3]{{\frac{a}{b}}} \right ) }+{\frac{7\,B}{216\,{a}^{2}b}\arctan \left ( 2\,{\sqrt{x}{\frac{1}{\sqrt [6]{{\frac{a}{b}}}}}}+\sqrt{3} \right ){\frac{1}{\sqrt [6]{{\frac{a}{b}}}}}}-2\,{\frac{A}{{a}^{3}\sqrt{x}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((B*x^3+A)/x^(3/2)/(b*x^3+a)^3,x)

[Out]

-19/36/a^3/(b*x^3+a)^2*x^(11/2)*A*b^2+7/36/a^2/(b*x^3+a)^2*x^(11/2)*b*B-25/36/a^2/(b*x^3+a)^2*A*x^(5/2)*b+13/3
6/a/(b*x^3+a)^2*B*x^(5/2)-91/108/a^3*A/(a/b)^(1/6)*arctan(x^(1/2)/(a/b)^(1/6))-91/432/a^4*A*b*3^(1/2)*(a/b)^(5
/6)*ln(x-3^(1/2)*(a/b)^(1/6)*x^(1/2)+(a/b)^(1/3))-91/216/a^3*A/(a/b)^(1/6)*arctan(2*x^(1/2)/(a/b)^(1/6)-3^(1/2
))+91/432/a^4*A*b*3^(1/2)*(a/b)^(5/6)*ln(x+3^(1/2)*(a/b)^(1/6)*x^(1/2)+(a/b)^(1/3))-91/216/a^3*A/(a/b)^(1/6)*a
rctan(2*x^(1/2)/(a/b)^(1/6)+3^(1/2))+7/108/a^2*B/b/(a/b)^(1/6)*arctan(x^(1/2)/(a/b)^(1/6))+7/432/a^3*B*3^(1/2)
*(a/b)^(5/6)*ln(x-3^(1/2)*(a/b)^(1/6)*x^(1/2)+(a/b)^(1/3))+7/216/a^2*B/b/(a/b)^(1/6)*arctan(2*x^(1/2)/(a/b)^(1
/6)-3^(1/2))-7/432/a^3*B*3^(1/2)*(a/b)^(5/6)*ln(x+3^(1/2)*(a/b)^(1/6)*x^(1/2)+(a/b)^(1/3))+7/216/a^2*B/b/(a/b)
^(1/6)*arctan(2*x^(1/2)/(a/b)^(1/6)+3^(1/2))-2*A/a^3/x^(1/2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x^3+A)/x^(3/2)/(b*x^3+a)^3,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 2.899, size = 9719, normalized size = 27.69 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x^3+A)/x^(3/2)/(b*x^3+a)^3,x, algorithm="fricas")

[Out]

1/432*(28*sqrt(3)*(a^3*b^2*x^7 + 2*a^4*b*x^4 + a^5*x)*(-(B^6*a^6 - 78*A*B^5*a^5*b + 2535*A^2*B^4*a^4*b^2 - 439
40*A^3*B^3*a^3*b^3 + 428415*A^4*B^2*a^2*b^4 - 2227758*A^5*B*a*b^5 + 4826809*A^6*b^6)/(a^19*b^5))^(1/6)*arctan(
1/3*(2*sqrt(3)*sqrt((B^5*a^21*b^4 - 65*A*B^4*a^20*b^5 + 1690*A^2*B^3*a^19*b^6 - 21970*A^3*B^2*a^18*b^7 + 14280
5*A^4*B*a^17*b^8 - 371293*A^5*a^16*b^9)*sqrt(x)*(-(B^6*a^6 - 78*A*B^5*a^5*b + 2535*A^2*B^4*a^4*b^2 - 43940*A^3
*B^3*a^3*b^3 + 428415*A^4*B^2*a^2*b^4 - 2227758*A^5*B*a*b^5 + 4826809*A^6*b^6)/(a^19*b^5))^(5/6) + (B^10*a^10
- 130*A*B^9*a^9*b + 7605*A^2*B^8*a^8*b^2 - 263640*A^3*B^7*a^7*b^3 + 5997810*A^4*B^6*a^6*b^4 - 93565836*A^5*B^5
*a^5*b^5 + 1013629890*A^6*B^4*a^4*b^6 - 7529822040*A^7*B^3*a^3*b^7 + 36707882445*A^8*B^2*a^2*b^8 - 10604499373
0*A^9*B*a*b^9 + 137858491849*A^10*b^10)*x - (B^6*a^19*b^3 - 78*A*B^5*a^18*b^4 + 2535*A^2*B^4*a^17*b^5 - 43940*
A^3*B^3*a^16*b^6 + 428415*A^4*B^2*a^15*b^7 - 2227758*A^5*B*a^14*b^8 + 4826809*A^6*a^13*b^9)*(-(B^6*a^6 - 78*A*
B^5*a^5*b + 2535*A^2*B^4*a^4*b^2 - 43940*A^3*B^3*a^3*b^3 + 428415*A^4*B^2*a^2*b^4 - 2227758*A^5*B*a*b^5 + 4826
809*A^6*b^6)/(a^19*b^5))^(2/3))*a^3*b*(-(B^6*a^6 - 78*A*B^5*a^5*b + 2535*A^2*B^4*a^4*b^2 - 43940*A^3*B^3*a^3*b
^3 + 428415*A^4*B^2*a^2*b^4 - 2227758*A^5*B*a*b^5 + 4826809*A^6*b^6)/(a^19*b^5))^(1/6) + 2*sqrt(3)*(B^5*a^8*b
- 65*A*B^4*a^7*b^2 + 1690*A^2*B^3*a^6*b^3 - 21970*A^3*B^2*a^5*b^4 + 142805*A^4*B*a^4*b^5 - 371293*A^5*a^3*b^6)
*sqrt(x)*(-(B^6*a^6 - 78*A*B^5*a^5*b + 2535*A^2*B^4*a^4*b^2 - 43940*A^3*B^3*a^3*b^3 + 428415*A^4*B^2*a^2*b^4 -
 2227758*A^5*B*a*b^5 + 4826809*A^6*b^6)/(a^19*b^5))^(1/6) - sqrt(3)*(B^6*a^6 - 78*A*B^5*a^5*b + 2535*A^2*B^4*a
^4*b^2 - 43940*A^3*B^3*a^3*b^3 + 428415*A^4*B^2*a^2*b^4 - 2227758*A^5*B*a*b^5 + 4826809*A^6*b^6))/(B^6*a^6 - 7
8*A*B^5*a^5*b + 2535*A^2*B^4*a^4*b^2 - 43940*A^3*B^3*a^3*b^3 + 428415*A^4*B^2*a^2*b^4 - 2227758*A^5*B*a*b^5 +
4826809*A^6*b^6)) + 28*sqrt(3)*(a^3*b^2*x^7 + 2*a^4*b*x^4 + a^5*x)*(-(B^6*a^6 - 78*A*B^5*a^5*b + 2535*A^2*B^4*
a^4*b^2 - 43940*A^3*B^3*a^3*b^3 + 428415*A^4*B^2*a^2*b^4 - 2227758*A^5*B*a*b^5 + 4826809*A^6*b^6)/(a^19*b^5))^
(1/6)*arctan(1/50421*(2*sqrt(3)*sqrt(-282475249*(B^5*a^21*b^4 - 65*A*B^4*a^20*b^5 + 1690*A^2*B^3*a^19*b^6 - 21
970*A^3*B^2*a^18*b^7 + 142805*A^4*B*a^17*b^8 - 371293*A^5*a^16*b^9)*sqrt(x)*(-(B^6*a^6 - 78*A*B^5*a^5*b + 2535
*A^2*B^4*a^4*b^2 - 43940*A^3*B^3*a^3*b^3 + 428415*A^4*B^2*a^2*b^4 - 2227758*A^5*B*a*b^5 + 4826809*A^6*b^6)/(a^
19*b^5))^(5/6) + 282475249*(B^10*a^10 - 130*A*B^9*a^9*b + 7605*A^2*B^8*a^8*b^2 - 263640*A^3*B^7*a^7*b^3 + 5997
810*A^4*B^6*a^6*b^4 - 93565836*A^5*B^5*a^5*b^5 + 1013629890*A^6*B^4*a^4*b^6 - 7529822040*A^7*B^3*a^3*b^7 + 367
07882445*A^8*B^2*a^2*b^8 - 106044993730*A^9*B*a*b^9 + 137858491849*A^10*b^10)*x - 282475249*(B^6*a^19*b^3 - 78
*A*B^5*a^18*b^4 + 2535*A^2*B^4*a^17*b^5 - 43940*A^3*B^3*a^16*b^6 + 428415*A^4*B^2*a^15*b^7 - 2227758*A^5*B*a^1
4*b^8 + 4826809*A^6*a^13*b^9)*(-(B^6*a^6 - 78*A*B^5*a^5*b + 2535*A^2*B^4*a^4*b^2 - 43940*A^3*B^3*a^3*b^3 + 428
415*A^4*B^2*a^2*b^4 - 2227758*A^5*B*a*b^5 + 4826809*A^6*b^6)/(a^19*b^5))^(2/3))*a^3*b*(-(B^6*a^6 - 78*A*B^5*a^
5*b + 2535*A^2*B^4*a^4*b^2 - 43940*A^3*B^3*a^3*b^3 + 428415*A^4*B^2*a^2*b^4 - 2227758*A^5*B*a*b^5 + 4826809*A^
6*b^6)/(a^19*b^5))^(1/6) + 33614*sqrt(3)*(B^5*a^8*b - 65*A*B^4*a^7*b^2 + 1690*A^2*B^3*a^6*b^3 - 21970*A^3*B^2*
a^5*b^4 + 142805*A^4*B*a^4*b^5 - 371293*A^5*a^3*b^6)*sqrt(x)*(-(B^6*a^6 - 78*A*B^5*a^5*b + 2535*A^2*B^4*a^4*b^
2 - 43940*A^3*B^3*a^3*b^3 + 428415*A^4*B^2*a^2*b^4 - 2227758*A^5*B*a*b^5 + 4826809*A^6*b^6)/(a^19*b^5))^(1/6)
+ 16807*sqrt(3)*(B^6*a^6 - 78*A*B^5*a^5*b + 2535*A^2*B^4*a^4*b^2 - 43940*A^3*B^3*a^3*b^3 + 428415*A^4*B^2*a^2*
b^4 - 2227758*A^5*B*a*b^5 + 4826809*A^6*b^6))/(B^6*a^6 - 78*A*B^5*a^5*b + 2535*A^2*B^4*a^4*b^2 - 43940*A^3*B^3
*a^3*b^3 + 428415*A^4*B^2*a^2*b^4 - 2227758*A^5*B*a*b^5 + 4826809*A^6*b^6)) - 14*(a^3*b^2*x^7 + 2*a^4*b*x^4 +
a^5*x)*(-(B^6*a^6 - 78*A*B^5*a^5*b + 2535*A^2*B^4*a^4*b^2 - 43940*A^3*B^3*a^3*b^3 + 428415*A^4*B^2*a^2*b^4 - 2
227758*A^5*B*a*b^5 + 4826809*A^6*b^6)/(a^19*b^5))^(1/6)*log(16807*a^16*b^4*(-(B^6*a^6 - 78*A*B^5*a^5*b + 2535*
A^2*B^4*a^4*b^2 - 43940*A^3*B^3*a^3*b^3 + 428415*A^4*B^2*a^2*b^4 - 2227758*A^5*B*a*b^5 + 4826809*A^6*b^6)/(a^1
9*b^5))^(5/6) - 16807*(B^5*a^5 - 65*A*B^4*a^4*b + 1690*A^2*B^3*a^3*b^2 - 21970*A^3*B^2*a^2*b^3 + 142805*A^4*B*
a*b^4 - 371293*A^5*b^5)*sqrt(x)) + 14*(a^3*b^2*x^7 + 2*a^4*b*x^4 + a^5*x)*(-(B^6*a^6 - 78*A*B^5*a^5*b + 2535*A
^2*B^4*a^4*b^2 - 43940*A^3*B^3*a^3*b^3 + 428415*A^4*B^2*a^2*b^4 - 2227758*A^5*B*a*b^5 + 4826809*A^6*b^6)/(a^19
*b^5))^(1/6)*log(-16807*a^16*b^4*(-(B^6*a^6 - 78*A*B^5*a^5*b + 2535*A^2*B^4*a^4*b^2 - 43940*A^3*B^3*a^3*b^3 +
428415*A^4*B^2*a^2*b^4 - 2227758*A^5*B*a*b^5 + 4826809*A^6*b^6)/(a^19*b^5))^(5/6) - 16807*(B^5*a^5 - 65*A*B^4*
a^4*b + 1690*A^2*B^3*a^3*b^2 - 21970*A^3*B^2*a^2*b^3 + 142805*A^4*B*a*b^4 - 371293*A^5*b^5)*sqrt(x)) + 7*(a^3*
b^2*x^7 + 2*a^4*b*x^4 + a^5*x)*(-(B^6*a^6 - 78*A*B^5*a^5*b + 2535*A^2*B^4*a^4*b^2 - 43940*A^3*B^3*a^3*b^3 + 42
8415*A^4*B^2*a^2*b^4 - 2227758*A^5*B*a*b^5 + 4826809*A^6*b^6)/(a^19*b^5))^(1/6)*log(282475249*(B^5*a^21*b^4 -
65*A*B^4*a^20*b^5 + 1690*A^2*B^3*a^19*b^6 - 21970*A^3*B^2*a^18*b^7 + 142805*A^4*B*a^17*b^8 - 371293*A^5*a^16*b
^9)*sqrt(x)*(-(B^6*a^6 - 78*A*B^5*a^5*b + 2535*A^2*B^4*a^4*b^2 - 43940*A^3*B^3*a^3*b^3 + 428415*A^4*B^2*a^2*b^
4 - 2227758*A^5*B*a*b^5 + 4826809*A^6*b^6)/(a^19*b^5))^(5/6) + 282475249*(B^10*a^10 - 130*A*B^9*a^9*b + 7605*A
^2*B^8*a^8*b^2 - 263640*A^3*B^7*a^7*b^3 + 5997810*A^4*B^6*a^6*b^4 - 93565836*A^5*B^5*a^5*b^5 + 1013629890*A^6*
B^4*a^4*b^6 - 7529822040*A^7*B^3*a^3*b^7 + 36707882445*A^8*B^2*a^2*b^8 - 106044993730*A^9*B*a*b^9 + 1378584918
49*A^10*b^10)*x - 282475249*(B^6*a^19*b^3 - 78*A*B^5*a^18*b^4 + 2535*A^2*B^4*a^17*b^5 - 43940*A^3*B^3*a^16*b^6
 + 428415*A^4*B^2*a^15*b^7 - 2227758*A^5*B*a^14*b^8 + 4826809*A^6*a^13*b^9)*(-(B^6*a^6 - 78*A*B^5*a^5*b + 2535
*A^2*B^4*a^4*b^2 - 43940*A^3*B^3*a^3*b^3 + 428415*A^4*B^2*a^2*b^4 - 2227758*A^5*B*a*b^5 + 4826809*A^6*b^6)/(a^
19*b^5))^(2/3)) - 7*(a^3*b^2*x^7 + 2*a^4*b*x^4 + a^5*x)*(-(B^6*a^6 - 78*A*B^5*a^5*b + 2535*A^2*B^4*a^4*b^2 - 4
3940*A^3*B^3*a^3*b^3 + 428415*A^4*B^2*a^2*b^4 - 2227758*A^5*B*a*b^5 + 4826809*A^6*b^6)/(a^19*b^5))^(1/6)*log(-
282475249*(B^5*a^21*b^4 - 65*A*B^4*a^20*b^5 + 1690*A^2*B^3*a^19*b^6 - 21970*A^3*B^2*a^18*b^7 + 142805*A^4*B*a^
17*b^8 - 371293*A^5*a^16*b^9)*sqrt(x)*(-(B^6*a^6 - 78*A*B^5*a^5*b + 2535*A^2*B^4*a^4*b^2 - 43940*A^3*B^3*a^3*b
^3 + 428415*A^4*B^2*a^2*b^4 - 2227758*A^5*B*a*b^5 + 4826809*A^6*b^6)/(a^19*b^5))^(5/6) + 282475249*(B^10*a^10
- 130*A*B^9*a^9*b + 7605*A^2*B^8*a^8*b^2 - 263640*A^3*B^7*a^7*b^3 + 5997810*A^4*B^6*a^6*b^4 - 93565836*A^5*B^5
*a^5*b^5 + 1013629890*A^6*B^4*a^4*b^6 - 7529822040*A^7*B^3*a^3*b^7 + 36707882445*A^8*B^2*a^2*b^8 - 10604499373
0*A^9*B*a*b^9 + 137858491849*A^10*b^10)*x - 282475249*(B^6*a^19*b^3 - 78*A*B^5*a^18*b^4 + 2535*A^2*B^4*a^17*b^
5 - 43940*A^3*B^3*a^16*b^6 + 428415*A^4*B^2*a^15*b^7 - 2227758*A^5*B*a^14*b^8 + 4826809*A^6*a^13*b^9)*(-(B^6*a
^6 - 78*A*B^5*a^5*b + 2535*A^2*B^4*a^4*b^2 - 43940*A^3*B^3*a^3*b^3 + 428415*A^4*B^2*a^2*b^4 - 2227758*A^5*B*a*
b^5 + 4826809*A^6*b^6)/(a^19*b^5))^(2/3)) + 12*(7*(B*a*b - 13*A*b^2)*x^6 + 13*(B*a^2 - 13*A*a*b)*x^3 - 72*A*a^
2)*sqrt(x))/(a^3*b^2*x^7 + 2*a^4*b*x^4 + a^5*x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x**3+A)/x**(3/2)/(b*x**3+a)**3,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.40314, size = 444, normalized size = 1.26 \begin{align*} -\frac{2 \, A}{a^{3} \sqrt{x}} + \frac{7 \, B a b x^{\frac{11}{2}} - 19 \, A b^{2} x^{\frac{11}{2}} + 13 \, B a^{2} x^{\frac{5}{2}} - 25 \, A a b x^{\frac{5}{2}}}{36 \,{\left (b x^{3} + a\right )}^{2} a^{3}} - \frac{7 \, \sqrt{3}{\left (\left (a b^{5}\right )^{\frac{5}{6}} B a - 13 \, \left (a b^{5}\right )^{\frac{5}{6}} A b\right )} \log \left (\sqrt{3} \sqrt{x} \left (\frac{a}{b}\right )^{\frac{1}{6}} + x + \left (\frac{a}{b}\right )^{\frac{1}{3}}\right )}{432 \, a^{4} b^{5}} + \frac{7 \, \sqrt{3}{\left (\left (a b^{5}\right )^{\frac{5}{6}} B a - 13 \, \left (a b^{5}\right )^{\frac{5}{6}} A b\right )} \log \left (-\sqrt{3} \sqrt{x} \left (\frac{a}{b}\right )^{\frac{1}{6}} + x + \left (\frac{a}{b}\right )^{\frac{1}{3}}\right )}{432 \, a^{4} b^{5}} + \frac{7 \,{\left (\left (a b^{5}\right )^{\frac{5}{6}} B a - 13 \, \left (a b^{5}\right )^{\frac{5}{6}} A b\right )} \arctan \left (\frac{\sqrt{3} \left (\frac{a}{b}\right )^{\frac{1}{6}} + 2 \, \sqrt{x}}{\left (\frac{a}{b}\right )^{\frac{1}{6}}}\right )}{216 \, a^{4} b^{5}} + \frac{7 \,{\left (\left (a b^{5}\right )^{\frac{5}{6}} B a - 13 \, \left (a b^{5}\right )^{\frac{5}{6}} A b\right )} \arctan \left (-\frac{\sqrt{3} \left (\frac{a}{b}\right )^{\frac{1}{6}} - 2 \, \sqrt{x}}{\left (\frac{a}{b}\right )^{\frac{1}{6}}}\right )}{216 \, a^{4} b^{5}} + \frac{7 \,{\left (\left (a b^{5}\right )^{\frac{5}{6}} B a - 13 \, \left (a b^{5}\right )^{\frac{5}{6}} A b\right )} \arctan \left (\frac{\sqrt{x}}{\left (\frac{a}{b}\right )^{\frac{1}{6}}}\right )}{108 \, a^{4} b^{5}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x^3+A)/x^(3/2)/(b*x^3+a)^3,x, algorithm="giac")

[Out]

-2*A/(a^3*sqrt(x)) + 1/36*(7*B*a*b*x^(11/2) - 19*A*b^2*x^(11/2) + 13*B*a^2*x^(5/2) - 25*A*a*b*x^(5/2))/((b*x^3
 + a)^2*a^3) - 7/432*sqrt(3)*((a*b^5)^(5/6)*B*a - 13*(a*b^5)^(5/6)*A*b)*log(sqrt(3)*sqrt(x)*(a/b)^(1/6) + x +
(a/b)^(1/3))/(a^4*b^5) + 7/432*sqrt(3)*((a*b^5)^(5/6)*B*a - 13*(a*b^5)^(5/6)*A*b)*log(-sqrt(3)*sqrt(x)*(a/b)^(
1/6) + x + (a/b)^(1/3))/(a^4*b^5) + 7/216*((a*b^5)^(5/6)*B*a - 13*(a*b^5)^(5/6)*A*b)*arctan((sqrt(3)*(a/b)^(1/
6) + 2*sqrt(x))/(a/b)^(1/6))/(a^4*b^5) + 7/216*((a*b^5)^(5/6)*B*a - 13*(a*b^5)^(5/6)*A*b)*arctan(-(sqrt(3)*(a/
b)^(1/6) - 2*sqrt(x))/(a/b)^(1/6))/(a^4*b^5) + 7/108*((a*b^5)^(5/6)*B*a - 13*(a*b^5)^(5/6)*A*b)*arctan(sqrt(x)
/(a/b)^(1/6))/(a^4*b^5)